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AN ANALYSTS OF SOME GRAPH THEORETICAL CLUSTER TECHNIQUES(l)

(2)

J. Gary Augustson and Jack Minker

University of Maryland, College Park, Maryland

ABSTRACT. This paper explores several graph theoretic cluster techniques
aimed at the automatic generation of thesauri for information retrieval
systems. Experimental cluster analysis is performed on a sample corpus of
2267 documents. A term-term similarity matrix is constructed for the 3950
~unique terms used to index the documents. Various threshold values, T, are
applied to the similarity matrix to provide a series of binary threshold
matrices. The corresponding graph of each binary threshold matrlx is used
to obtain the term clusters.

Three delelL]OHS of a cluster are analyzed

1. The connected components of the threshold matrix.

‘2. The maximal complete subgraphs of the connected components of the
threshold matrix. -

3. A cluster of the maximal complete subgraphs of the threshold matrix,
as described by Gotlieb and Kumar J16]. :

Algorithms are described and analyzed for ‘obtaining each cluster type.
The algorithms are designed to be useful for large document and index
collections. Two algorithms have been tested that find maximal complete . ‘
subgraphs. An algorithm developed by Bierstone [6], offers a significant
time improvement over one suggested by Bomner [7]. /////

- For threshold levels, T 20.6, basically, the same clusters are developﬂd
regardless of the cluster definition used. In such situations one need only
find the counnected components of the graph to develop the clusters.

-. KEY WORDS AND PHRASES: Cluster analysis, graph-theoretic, connected component,
‘maximal complete subgraph, clique, binary threshold matrix, information
storage and retrieval, similarity matrix, term—term matrix.
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1. Introductilon

One of the major problems concerning a user of present day information
systems is how to extract information pertinent to his needs. The rare
individual who knows exactly what he wants, and is aware of what the system
contains, will encounter few problems. The majority of users, however; are
usually unable to define all items of interest to them, and are not intimately
familiar with their collection. Even if an adeduate description of the type
of information desired can be specified, most users are not sufficiently

familiar with the document collection to assure the retrieval of documents

. relevant to their needs. . ’ R : .

In most information systems, whether automated or not, some relationship
can be established between the various terms used to index documents.
Extensive experimental work has been undertaken in order to develop statis-

tically determined term associations. Howeyer, work performed by Salton [35]

and Lesk [23] on a limited sample document collection indicates that a well
‘constructed thesaurus may prove to be the best method of exhibiting term

~associations. If this observation, based on a small corpus, proves to be

true, the problem remains Fhat, even though a relationship between index terms
generally exiéts, very few théséuri of index terms are available.‘ How, then,
Shall!such a thesaurus be geherated? \ )

) One approaéh is to compile a thesaurus manually, as for example; the -

‘thesaurus for the EURATOM nuclear energy document collection. The result is

a well structured thesaurus represented in both list and graphical form [14].
-The construction of such a thesaurus is a complex, time consuming operation.
inghly skilled subject-area specialists must be used in order to insure proper

construction. For document collections larger and more general in nature than

the EURATOM collection, subject—area.specialists covering a wide variety of
fields must be used. Problems may be encountered in subdividing the docuﬁent
collection into subsets that will be meahingful to the individual experts. The
use of such a wide range of specialists may beinot only impractical economically,

but physically impossible. During the time required to construct such a

thesaurus, the user of the information system will suffer due to the lack of

information about the document collection which is available.

Experimentation in the field of cluster analysis is aimed at providing the

user of an information system with an automatically generated thesaurus. The

.




thesaurus produced could provide a two—fold.purpose. First, it could
constitute a reasonable representation of the interrelatedness of the index
“terms that could be used to query the document collection. Second, if a
better thesaurus is desired, the term relations established by a clustering
scheme could provide an original partition of the terms which subject-area
sPeciaiistslcould then refine. Many of the tedious and time consuﬁing problens
of thesaurus construction for large, general, document collections thereby
could be avoided.

An automatic, or semi-automatic generation scheme should prove valuable
for large, general, document collections about which little information
concerning the sPeCific contents is known. It is to this problem that this

paper is addressed.

2;; Related Work in Cluster Analysis

2.1 Ceneral Cluster Techniques
‘Many 5nd1v1duals have made substantial contributions to the fJeJd of
1u0te1 analysis. Ball [4], surveys many of these efforts. In this section,

we briefly note some of the previous conﬁributioﬁs to developing clusters
of terms in a document collection. Tanimoto, [34,43], in the late 1950's, '
studied aspects.of this problem. We'usevTanimoto's similarity.measure in

“this study. o : ' a - ' __////T

“In 1960, Borko [8] used the principle of factor analyols to deve]op
clusters for a 90 x 90 correlation matrix. Stiles and Salisbury [42], have
"developed a SOnéalleq B—céefficient, to subdivide term—-profiles into distinct
sets., Baker, [3], iﬁ 1962, suggested the use of létent_class analysis to
‘develop clusters. : -

~ Needham [25], has experimented Qith‘cluster finding techniques ﬁsing what

he calls arithmetic cohesion, and terms his process 'clump' finding.} Sparck-
‘Jones [39], at the Cambridge Language Research Unit has extended Needham's
.work and has experimented with a set of 641 terms. .

Recently, Dattola [13], has developed a cluster method based on an
adaptation of a technique suggested by Doyle [14]. Dattola's technique assures
that his method will converge to a set of c‘iustersy vhereas Doyle's approach

need not terminate.
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2.2 Gréph Theoretical Cluster Techniques

The original suggestion to use graph theoretical definitioné of a clﬁsper
was made, perhaps, by Kuhns [22] in beccmber 1959. Kuhns, in his paper,
defines the maximal complete subgraph of a graph as a cluster. A maximal
complete subgraph of a graph is a subgraph in which every pair of nodes in

the subgraph is connected by an edge of the graph. Kuhns does not provide

experimental results In his paper.

Parker-Rhodes and Needham [27,30,31] have defined what is called a G-R

clump, an iterative procedure having some graph theoretical relations. Dale

: and Dale [12] have experimented with this technique.

Sparck-Jones [37] has reported on an extension of clustering Wérk performed

by herself and Needham. Clqsters were produced from a data base of 712 terms

using four definitions of a cluster, which she terms (1) strings, (2) stars,
(3) cliqués (which are termed maximal subgraphs in this paper), and (4) clumps.
TGotlieb and Kumar [15] also use the éoncept of maximal complete sub-
graphs for defining clusters. They employ the.Librgfy of Congreés Subject
Heading list to develop clusters of terms rather than a document collection
from which one develops a termftefm matrix. An important aspect of their work
is the suggesgion to form clusters of the clusters. We experiment with this
approach in this paper. ‘ ' ‘ o A 7
Other work in cluster analy31s is 1eferenced in the bjbllooraphy ' ;)///

e
-

3. Experimental System

3.1 Overview of the Experimental System

- The experimental work reported on in this paper is presented in a more

extﬂn°1ve paper [2]. The work consisted of the development of a data base,

- consisting of a set of documents and a set of terms used to index the

documents. A similarity matrix is constructed from the document-term matrix

to show the interrelatedness of the various index terms. The similafity
matrix has entries between 0 and 1 in the matrix. Various threshold values
are applied to the 51m11311ty matrix to produce the threshold matrices upon

(1)

whlch the clustering process is performed. The connected components of the

threshold matrices provide the weakest definition of a cluster; the maximal

(1) A connected component of a graph consists of the set of nodes that are

mutually reachable by proceeding along the edges of the gréph.




complete éubgraphs of the threshold matrices provide the strictest definition
of a cluster. (Fig. 1 illustrates a typical cluster graph, and the definitions
used for a cluster.) Somé combining of the maximal complete subgraphs is
performed in order to provide a definition of a cluster intermediate between
the connected components of a graph and the maximal complete set of the graph.
A corpus consisting of 2267 documents and 3950 unique index terms, and
concerning a wide variety of topics was used for the study. A term-term
. ., using the Tanimoto [34]

1]
similarity measure, was then constructed. The element aij of the term-term

similarity matrix, consisting of elements a

martix represents the degree to which terms i and j of the document collection
are interrelated. A series of binary threshold matrices were constructed from
the resultant siﬁilarity matrix for values of T = 0.1, T = 0.2, T = 0.3, T = 0.4,
T = 0f5, T = 0.6, and T = 0.7. If the entries aij of the similarity matrix -
were greater than the threshold value T, then the corresponding entry of the
'tthSholdAmatrix was set to one; otherwise, it was set to zero. The binary
symmetric threshold matrix is equivalent to an undirected graph ﬁhere the terms
are the nodes of the graph, and where an .edge exists between nodes'i and J if
the threshold matrix has a one in:the (i,j)th position. Algorithms developed
by Bonner [7] -and Bierstone [6] were modified and implemented to find the
méximal complete subgraphs of the connected components of the threshold matrice;.
Maximal completé subgraphs were produced from threshold matrices for T = 0?4, |
T = 0.5, T =0.6, and T = 0.7 due to the large size of the connected components

‘found for values of T ¢ 0.4,
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The graph has two connected components —Vthe components:
{Bombers, Strategic, Missiles} and o v ;,)///
:{Legaj Sabotage Recruitment, Propaganda, Clandest:ne, Guexrllia,'
Insu1gency, Paramilitary and Motivations}

The graph has four maximal complete sets:

- {Bombers, Missiles, Strategic}, {Legal, Sabotage, Recruitwment,

Propaganda}; {Propaganda, Clandestine, Guerrillas, Insurgency,
Paramilitary}, {Motivations, Clandestine, Guerrillas, Insurgency,

} Paramilitary}.

The graph has three grouped maximal complete sets:

{Bombers, Strategic, Missiles}, {Sabotage, Legai, Recruitment,
Pfopéganda}, {Propaganda, Cléndeétine, Guerrillas, Imsurgency,

Paramilitary, Motivations}.

Fig. 1 - Typical Clusters




Using the procedure suggested by Gotlieb and Kumar [16], those maximal
complete subgraphs which had a significant number of common terms were
grouped together to form new clusters. These clusters provide an intermediate
definition between the clusters’defined by the connected components of the
threshold matrices and those défined by the maximal complete guhgraph of

the connected components.

The clusters produced from the several threshold matrices and the three
cluster definitions were analyzed and compared as to general composition and

content,

3.2 Déécription of the Corpus

~The corpus used for this study consists of 2267 documents composed
basically of résear;h, developmeht, test and evaluation Information from 22
broad subjects fields of science covering a five year period from 1963 to 1968.
The majority of the documents are from the fields of mathematics; physics,
and communication. For each document; the authbr, title, abstract,>and
descriptors were available, For the work reported on in this paper, we are
concerned .only with the title and the descriptors.

Approximately 90% of the documents were assigned descriptors at
composition time'by the author. The remaining documents were indexed by non-
subject-matter-oriented individuals with the aid of a master descriptor
dictionary. Nearly one-fourth of the contributing authors had access to this
master descriptor dictionary while indexing their own documents. Regardless
of who performed the initial indexing of the documents, all indexed documents
were post-eédited by library personnel prior to insertion into the collection
in order to assure proper indexing. The authors of this paper were not
‘involved in this process, but merely use the results of the above efforts.

As this corpus was already in machine readable form, the tedious work
of gathering and encoding a representative set of documents was gvoided. The
corpus is a subset‘of a much larger collection composed of documents from
the same subject aréés. Though no previous experimental work had been
performed on this particular set, it was possible to consult with individuals
who were better acquainted with the contents-of the entire collection to

determine if the clusters produced were meaningful.




index terms, and P represents the number of documents in which term i is

3.3 Selection of a Similarity Mecasure

Sone measure of the relatedness between terms used to indekx the
documents of the data set must be established in order to perform cluster
analysis. Several different similarity measures have been proposed
[7,12,18,21,41,43]. Since in~depth comparisons and evaluations concerning
various similarity measures have been conducted before by other authors
[18,21,36], only omne similarity measure was studied. Sparck-Jones [37], in

particular, comments that the several similarity definitions used in her

- ¢luster production experiments did not appear to give radically different

. results,

The Tanlmoto [34] 51m11a11ty measure was used for this work. Tanlmoto

defines the 81m11ar1Ly measure between two index terms i and j to be:

+

e sci,j>= 1j
- 33:7 %43

where aij.represents the number of documents in which both i and j occur as

’

used as an index term.

3.4 Greation of the Threshold.Matrix'

e

To find clusters accoxdlng to the three definitions considered, it Wﬁ%///

necessary to determine the term- LeLm association matrix. If C = [C..]

1 (2)

. T
represents the documentwterm matrix » then €. C is the term- term matrix .

When the term-term matrix is suitably normalized as, for example, suggested by

(3)

Tanimoto, the entries of the normalized term-term matrix have values
between 0 and 1, By applying a cut-off value of T to the similarity matrix,
vhereby two terms are considered associated if the entries in the similarity

matrix are 2 T, this matrix is converted into a binary matrix termed the

threshold matrix. - T . - AR

(1) An n x m binary matrix representing a data set of n documents and m unique
index terms. If document i is indexed by term j, then Cj, = 1, othervise
.¢,, = 0. - :
1]

(2) An m x m symmetric matrix where C,, represents the number of documents which

! i .
have been indexed by both terms 1 dnd 3.
(3) Also referred to as the similarity matrix.




7 of the algorithm developed by Galler and Fisher and described in []9], p. 3537

The actual production of the term-—term matrix was achieved by a series
of programs which avoided the problem of multiplying large matrices. A

description of this program is given in [2]. The program is applicable to

large matrices and is unrestrained by the size of the data set.

3.5 Construction of the Connected Components

In developing term clusters for large document collections, it is helpful

to first reduce the graph in question to its connected components. Since

. elements of clusters must be interrelated to one another, it would be wasteful

to attempt to find clusters between terms in separate connected components.

_‘Bybreducing a graph to its connected components and handling each component

as a distlnct graph term relations of large document collections can be
Areduced to a size that is manaoeable Ulthln the core limits of a ﬁonventlonal

- computer. The connected components are further required since they provxded

our weakest definition of a cluster. o Co- .

An'algorithm was developed which produced the connected components of an

_input gfaph and was dependent only upon the number of nodes in the input

graph. The output connected components provided both resultant clusters and

distinct divisions of the data set for input to the maximal complete subgraph «

_algorithms. The algorithm developed is described in [2}. It is an adaptation

-

The adaptatlon permits one to find connected components in large graphs. A

graph with 2084 nodes and 6630 edges developed 475 connected components in

-1.87 minutes. This time includes the time required to input the graph from

magnetic tape, and output the connected components onto magnetic tape. For all

graphs discussed in this paper, the times required to £ind the connected

. components>in the graphs are given in Appendix 3.

=~ 3.6 Development of the Maximal Complete Sets

Several algorithms have been developed for generating maximal complete
subgraphs of a graph. These algorithms were intfoduced by Harary and Ross,.
Bierstone [6], and Bonner [7]. Apgarentiy, the Harary-Ross algorithm was the
first developed; however, it invol;es tﬂe computation and manipulation of large
matrices for large input graphs. The Bierstone and Bonmer algorithms are more

adaptable to cluster analysis for large data sets and, as a result, were
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implemented for our work. Both the Bierstone and the Bonner algorithms as

reported in the literature were not complete. The algorithms are described
in thls section and presented in detail in the appendix. Input to the two

algorithms consisted of the connected components of the threshold matrices

produced previously.

3.6.1 Implementation of the Bierstone Algorithm for Producing

SN L

Maximal Complete Subgraphs

* The following algorithm,\developed by Bieretone [6], was used to produce
maximal complete subgraph clusters(l). The algorithm required a minor
’modificetion in order for it to work. To the best of our knowledge, the

- algorithm has not been implemented and used on an actual data set previously.
It was selected as the major cluster producing algorithm for this paper.

The representation of a graph is input te the algorithm withAeach of the
nodes pj, G = 1,;..,n),vassigned‘a.unique number used in all Qpefations in
‘placevef_the aceual nodes. .For_each node Pj’ the?e is assoeiated a set Mj,
where S : : .

='{pk I the pair (pj;pk) represents an edge of the
.graph and k > j} ’ ’ ' ‘

,///;2

Py
‘where k> j‘(i e. - if node number 7 were comnected to nodes 3, 5, 9, 11, and

13 the corlespondlng MJ entry would be M = {9, 11, 13)). The sets Mj

It is crueial to the operation of the algorithm that Mﬁ contain only nodes

corlespond to the upper trzangular form of a matrix.

Ve further note that the same algorithm can be used to flnd the maximal
complete set of an acyclic dllected graph; that is, a directed graph Wnthout
.eycles. One first performs a topological sort (see [19], p. 259 for an
1a1gorithm to develop a topological sort) on the directed graph. Nodes are
then numbered in order of their appearance in the topological sort. ’

To conserve storage space, the entries, Mj’ are represented in the

computer as binary vectors where bit i is one in entry Mj if the input edge

of ¢

(1) The algorithm was developed by Mr. E. Bierstone, a student in the Mathematics
Department at the University of Toronto.




o ‘be combined with the set of complete subgraphs C

.,]_]1.4

"(3,1) i > j, exists; otherwise, bit i is zero. The number of bits required
for entries of M is determined by thé size of the largest connected
component in the entire data set being processed.

The algorithm utilizes a set of elements C (each of which is in\the'
form of a binary vector) where the maximal complete subgraphs are built up.
During‘the operation of the algorithm, nodes are added to the various complete
subgraphs contained in C, until, upon termination, all of the Ck (k=1,...,n)
represent maximal complete subgraphs of the input set.

The algorithm takes the set of nodes represented by the set {pj}L}M
(Mj# 0) and attempts to find maximal complete subgraphs of this set which can
that have already been

, k
' developed, or can be introduced as new unlque complete subgraphs of -

S

the data 'set. The following prOVldes a brief description of the algorlthm.
Originally, i is set to zero and j is set equal to the nomber of mnodes
in the input graph. The value of j is decremented By one until a non-zero
Hﬁ is found. At this point, for each Py contalned in‘M,, i is dincremented
- by.one and the pair {pj,pk} is placed into Ci' This establlshes a set of
| distinct elements Ck (k = 1,...,i), each consisting of node pJ and one of the
nodes to which p is connected, as the orlglnal set of complete subgraphs
upon which to bUlld. » - i
- Iterative processing begins by decrementing j by one until a non-zero MJ’
is found _When j becomes zero, the algorlthm is finished and the elements of

“the array C, represent the maximal complete subgraphs of the input graph.

; 4 tempgrary storage location W, used to.keep track of those nodes ofAMj
which are not added to some Ck, is set equal to Mj° The value of L is set
equal to i (the number of complete subgraphs produced so far by the system)
and k is set to zero so iteration through all"Ck can begin. The value of k
is increased by one, and if it is greater than L, then. all current complete

“subgraphs C, (k = 1,...,L) have been searched ‘to determine where elements’ of

k .
MJ can be 1nserLed( ). Any nodes still remaining in W have not been inserted
. In the set of complete subgraphs C. Since pj, by definition, is connected to

all such nodes, the pairs of items fpj,pp} for all Pl contained in W must be.

-_(l) The entry Mj is only compared with the elements of Ck for k = 1,...,L
because all entries Ck (k =L+ 1,...,1i) will have been introduced by

the present Mj.
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inserted into the éysteh as combletebsubgraphs of degree twe. For each
such pair, 1 is incrcmented'by one and a new complete subgraph Ci'=b{pj,pk}
is constructed (i.e. - if W contains nodes 10, and 13, j = 4, and i = 6, ,
" then C7 = {4,'10} and C8 = {4, 13}). Control then returns back to continue
decrementing j in order to introduce a new set M,.

If k is not greater than L, a temporary stoiage location T is set equal
»to those elements common to Ck and Mj' By deflnltlon, elements of T are
contained within the complete subgraph Ck Thus, all elements of T must be
.interconnected and 31nce,.by definition, all are connected to pj, the set of
. nodes T U {p } form a complete subgraph. If T is empty, no meaningful match '
‘ with Ck or MJ can be made in future steps, so it is futile to continue, If
- T contains only one node, the most that can be accomplished by executing the
following series of complex steps would be ‘to introduce the set\{pj} UT as

a complete subgraph of degree two. A simple process, utilizing W, was défined

preﬁiously for this”furpose. Therefore, if T contains fewer than two nodes;
control is returned to cbmpare Mj.with the values of the next entry of C. If
T contains more than two nodes, the nodes of T are deleted from W as they will
be inserted in the follow1n0 steps into the set C,

Dependln upon the values of T, MJ, and Ck’ one of the fo]low1ng three
alternatlves w1ll be used to 1ntroduce the elements of T into the set of

complete subgraphs C. IfT=¢C Alternatlve (I) will be taken; if T # C,_ but-

k? k_~
ST = hj, then Alternatlve (II) Ulll be taken, if T # C and T # MJ’ then
Alternatlve (III) will be used. , _ 4
Alternat:ve (. = C. means that the present node undel conéideration'

k

is connected to all elements of the complete subgraph C Then, pj must be

K

connected to all elements of C, and can be added to the complete gubgraph C

k _ k'’
~ Due to the iterative nature of the algorithm, the remaining C (¢ =k +1,...,1)

must  be searched to see if any are subsets of the just altered Ck If any are
-found, they must be deleted from the set C. Bierstone omits this step from his
algorithm. The corrected Bierstone algorithm is detailed in Appendix 1.

After the above process is completed; T is compared to M. . If the two

‘are equal, this means, since {p rUrT that‘{p }[}M = C, and that any

k’
further processing for this MJ Wlll ~only produce subgrdpho of the just altered

complete subgraph C As a result, control will return to the point where

k’ , :
~another input set is introduced by again decrementing j. If T # Mj, this means




" to see if'any which contain pJ also contain all elements of T. If one is

“which is totally contained in S, then i is incremented by one and Ci is s

~13-

that there are elements of Mj not in the pewly altered complete subgraph Ck
and there may still be other Cq (g = k -+ 1,...,L) which contains two or more
nodes of Mj, thus introducing more new complete subgraphs. If this is the
case, control will return to increment k to pfoceed with comparing M, with
‘the femaining Cq. | ’

Alternative (I1). If, at the point of constructing T = CkfIMj, T is

found to be not equal to C

K’ but T = Mj’ this means that, although all nodes

~of M, are contained within the complete subgraph Ck’ there exists at least one

k]

node in Ck to which p, is not connected. However, as previously established,

the elements of T[J{pj} form a complete subgraph and therefore must be included

in the set C. As a result, i is incremented by one and C, is set equal to the

i
set Tl){p }. Since MJ = T, effectively, the set {p, }L’Mj has been inserted as

a complete subgraph and any further pxoceSblng of tth MJ will only pxoduce

. subgraphs of this set. Therefore, control w111 return to the p01nt which

-

introduces a new set MJ o . L.

»Alternati#e (II1). It is possible to have produced originally a T whiéh

-contains two or more nodes but is not didentical with either Ck or Mj. When

~such a situation arises, all Cq (q=1,...,k =1, k+ 1,...i) must be searched

found, this means that the present set of elementq T(){p } already belongs to
‘a complete subgraph and no furthel processing is necessary. Control will be. -~

_returned to check Mj against the‘nextventry of C. If no such Cq is found, a

“temporary location S is set equal to the set_T(/{pj}; If the elements of some

C (¢ =1L+ 1,...,1)(1) are contained within S, then C_ is set equal to S.
Thls has the effect of 1ncrea31ng the e]ement° of the Eomplete subgraph Cq to
.inglude all elements contained in S. Any other Cr (r=q+1,...,i) which is
contained in S must be deleted from ‘the set C to avoid allowing a complete

subgraph that is a subgraph of the complete subgraph S. If there is no C

.

q
et

equal to the complete subgraph S. Regardless of which course of action has been

‘taken in this processing step, all elements of Mﬁ have not been placed into the

same complete subgraph and control must be returned teo process Mj for the next

entry. ) ’ :

(1) Only values of . (k =L +1,...,i) introduced during processing of the

present value of Mj need be searched, as they are the only entries which

could possibly consist of subsets of the complete.subgraph S.
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3.6.2 An Alternative Implementation of Bierstone's Algorithm to

Conserve Storage Space

An alteration can be made to Bierstone's algorithm which can gllow one
to deal with input data sets quite large in size. If the input data 1s
.organized such that the values of Mj (j = 1,...,n) enter the system in -
descending order (Mh’ Mn_l,...,Ml), then only the elements of M for the
present value of j need be in the computer at any one time. This leaves
the set C as the only data itemirequiring core storage space, If each Ck
entry were represented interqally as a binary vector, sizable input sets
could be handled. For example, the input graph represented by the threshold
" matrix produced for T = 0.3 of our data set, included one connected componentv
of 1150 nodes. It would have been impdssiple to qperate the algorithm, as
»presented by Bierstone, on this'set, as éach.of the 1150 entries for Mj would
have required thirty—-two 36 bit words even to be represented as a binary
vector. This would have exceeded the core storage spacevof the-IBMV7094
kwithout having.allocated any space for the buiiding up of complete subgraphs
_in Cgv However, if only one'entry of M were needed in core at any one time,
. éffectively 20,000 to 25,000 storage locatjons (approximately that amount
of core left after the éystem’and needed programs are 1oadea) could be allocated

This would allow for approximately 600 to 800 elements of
P

to elements of Ce
Ck'(each being.a biﬁary»vector 32 words in length) to be used to create the-~
;maximal complete subgraphs. This would éppear to be sufficient space'ﬁo handle
~the data set. - : - ' ' ; o
Such an alteration to the algorithm greatly increases the size of the

data input'Set‘which can‘be processed. Space limitation problems would occur
-;OUiy when the number of nodes in the inputAconnecth componentbbedomes s0

large that the number of words required to represent each ehéry of'Ck

(k=1,...,n) as a bingry vector becomes so large that. the maximum allowable
\value of n becomes smaller than the number of complete subgraphs in the system
at any one time. It should be noted that in our particular data set, this
limitation point apbroaches quickly once the threshold useé to define the
input graph drops below T = 0.3. For T = 0.2, the largest connected component
contains 2,797 nodes; 78 thir;y~six bit words would be required to represent
_each entry of C. This would handle approximately 300 complete subgraphs of

“the graph. Since, by applying a threshold value of T = 0.4 to the same data




..He used (an IBM 7090 with a meﬁory size of 32 K words), the maximum allowable
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set, we introduced 329 additional connected components into the grdph, many
of which contained several maximal complete subgraphs, it would be realistic
to think that the input set for T = 0.2 would contain more than the allowable
300 maximal complete subgraphs.

‘Regardless of the fact that the above alteration to Bierstone's

'algo:ithm quickly approaches a limiting point, the algorithm does describe

how to find the maximal complete subgraphs of large data sets. Unfortunately,

due to the structure of our input data, we did not experiment with the '

suggested change in the algorithm; . |

. : . . . il
3.6.3 ;Expérimeﬁtétion with Bonner's Method for Cluster Production

_ Bonner [7] has reported on some extensive research in term clustering

which included the introduction of a new algorithm for producing the

* maximal complete subgraphs (referred to as 'tight clusters' by Bonner) of

an input data set. The Bonner algorithm as published in [6] is incorrect.
We have corrected the algorithm and programmed it in FORTRAN IV énd MAP for
the IBRM 7094, and applied it to our corpus. i '

Input to Bonner's algorithm‘is in the form of a threshold matrix T. We
have applied the Bonner algorithm to the threshold mafrix produced by applying
a value of T = 0.4 to the similarity matrix of our data base.

Bonner asserts that, due to storage limitations imposed by the machine -

-

sample size the algorithm can handle is 350 input terms. Bonner does not
subdivide the input threshold matrix into a series of disjoint threshold

“matrices, (Bonner's examples show that the elements may be disjoint), thereby

permitting each of the disjoint matrices to be treated as separate input data
sets.. Assuming there are disjoint sets, this could enable an appreciable

increase in the maximum allowable'sample sizé. As an example, for the threshold

-value T = 0.4 our data set which consists of 2,084 unique index terms, sub-

divided into 475 disjoint threshold matrices (each corresponding to a connected

component of the representative graph). Each of the sets was then used as

_ input to Bonner's algorithm with no problems arising concerning storage space.

The Bonner algorithm builds clusters one at a time while keeping several

push-down lists. Index terms of the document collection are assigned unique -

numbers which are used as representative forms within the lists for all




operations. The lists deﬁelopedAduring the operation of the algorithm are

as follows:

1. The list Aj - contains items that are in a cluster

thstep i.
2. The list C, - contains elements which could be added to

i

cluster A, at step 1.

i
3. The list Li - contains the number of the last item of Ci
to be considered for addition to the cluster Ai'
candidate list Cl contains all items of the input data set,

Originally,’ the

1
set to 1.

A, is empty, and the item L, to be considered for addition to cluster Al is

1

. The algorithm operates as follows, C. 1s searched to see if it contains

~the element represented by L ‘If the element is present, L is logically

‘or —ed with the elements of Al and placed in A,

441" Ci is then logically

‘and'-ed with the row of the threshold matrix corresponding to the value of

L. and the result is placed in C.

incremented by 1 and pJaced in L,

. L, is deleted from C, and then
+1 i~ i+l .
341" Now, i is incremented by 1, and the

process is repeated for the neW‘value of i. What, in effect; has happened,

is that the term represented by L has been added to the cluster A and the

elements of C have been changed to reflect all those elements in the data

-set that are connected to, but not contained within, the cluster A . Thls_//”'

_process continues untll there are no elements left in C, for cons:deratlon

- for addition to

i

the cluster Ai which have a numerical value larger than the

flast element added to the cluster. If at any point in the above iteration,

Ci is found not

*

no element of Ci

to contain the element corresponding to the value of Li, Li

" is incremented by 1 and the process is repeated for the new value of L_. When

is larger than Li,:a cluster has been found. Due to the

iterative nature of the algorithm, if the Eandidate list C, has not been

i

" _exhausted, the cluster found has either been'found before or it is a subset of

a cluster found

before and it is ignored. If C is empty, the cluster

(max1mal complete subgraph) is unique and it is saved, Regardless of the

contents of C

Ai is saved in a temp01ary location T. A backwards search of

the prevzously stored elements (A Ci, Li) is initiated by decrementing i

‘until a Ci is found which has elements greater than the value of the

corresponding I,
- i

which do not form a subset of T. By making this check at this
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point, soue processing'time is saved as §9@§<complete'subgraphs of the
maximal complete subgraph just fgund are rejected without having to
regenerate the entire cluster and then reject it because Ci is not null.
When a C meeting the above criteria is‘found3 the forward processing of
the data set begins again using the previously stored values of A, C, and
L for the present value of i. Originally, i is set to 1 and the algorithm
will terminate when i becomes 0. ‘

. If, ;after finding a point to begin forward processing following the
productlon of a cluster, the value of L is not incremented before proce581ng

is relnltnated the Bonner algorithm w1ll infinitely loop producing over and

i'over the same cluster. Incrementing Li corrects the algorithm. The corrected

version ‘of Bonner's algorithm appears in Appendix 2.

&, Analysis and Comparison of Bierstone's and Bonner's Algorithms

Bonner claims that his algorithm offers an improvement over. previous
qethods [22,27] since he does not output the same cluster repeatedly or
continually print out subsets of clusters already found. Indeed, this offers
an improvement in the type of output produced, but its’ sav1ng in process¢ng
time does not appear to be that great. In this study, the large1 clusters
of the data sets were produced by Bierstone's algorithm in significantly less
time than it took for Bonner's;algorithm.~ An analysis of Bonner's algorithmf”/
shows that, although each cluster is output oﬁly once with none of its subsets
output, many such subsets and dupiicate clusters are found by the algorithm

and rejected only when C. was found to be not empty after complete production

4 of the cluster (Step 6 of the algorlthm)

Since clusters are built up one item at a tlme, beglnnlna with the first

 index term, the production of clusters is dependent upon the numerical values

originally assigned to the input terms. The time involved in finding all

clusters varies according to the location of the clusters with respect to the
numbering scheme. This fact was most evident in the results produced by this
algorithm for our data base. A timing algorithm was utilized to determine
how long it took Bonner's algorithm to produce the resultant set of clusters
from each input set. These resulté vere compaxed with the time needed by
Bierstone's algorithm to produce the exact same clusters. Figure 2 shows the

comparative results.
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Comparative Number of
Time _ Applicable
: Data Sects

B < AFA 11(i)
B=A 3g(%)
B = 1,5A 4

B = 2A ‘ 31

B = 3A . -1 .12

B = 4A 1.

B = 5A | 3

B = 10A 1

B = 17A | 1
B> 250 > A 1

‘ngend:

A = Time requived for Biersone's algorithm to find the maximal
. complete subgraph clusters in an input set. '
*. . B = Time required for Bonner's algorithm to find the same maximal
ot complete subgraph clusters in the same data set, : '
: - (1) Of these: ‘ o (2) Of these:
8 contained one cluster .. 15 contained one cluster
~ 1 contained two clusters © 14 contained two clusters

2 contained three clusters 5 contained three clusters

Figure 2, COMPARATIVE RESULTS OF TIME REQUIREMENTS FOR THE
BONNER AND BIERSTONE ALGORITHMS

e
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In several instances, Bonner's algorithm worked as fast or faster than
Bierstone's. However, such figures are misleading as most all of these
inputlsets contained only from one to three small clusters. The most
indicative comparative.results are reflected by those input sets which
contained several clusters of varying size. In all but one case, Bierstone's
algorithm was at least twice as fast as Bonner's. 7

In the two largest input sets, Bierstone's algorithm proved to be much
faster. One large and highly connected input set consisting of 72 terms
was found to have three maximal complete subgraphs of 64 terms each and five
'smallér maximal éomplete subgraphs of six terms each. Bierstone's algorithm
took 0.133 seconds to develop the clusters. Bonner's algorithm needed 2.183
seconds to produce the same results. A soméwhat‘smailez input set (67 terms)
was found to have five maximal complete subgraphs of 47 terms each and six
additional maximal complete subgraphs of 3 or 4 telms each in O 733 seconds
by Bierstone's algoritbm (this was the most ploces ing tlme required of all
the input sets). Bonner's algorithm, in processing the same data set, worked
“for nearly two minutes without producino finaliresults. The activities of
Bonner's algorJthm wvere carefully ‘analyzed by means of detalled debug print-
outs which related the contents of thelistsA, C, L, and T at various stages
within the algorithm. It was discovered that the five large clusters were
found quickly and then the algbrithm proceeded to spend the rest of its time*/
. rejecting subsets of these clusters in an attempt to work 1tse1f back through
the data set to find the other clusters.

The fallure of the Bonne1 algorithm to produce results for the above

data set, vhile hav1ng relatively little- trouble in finding the maximal comp]ete

.. subgraphs of a larger and more complex input set, demonstrates the fact

that processing time for the algorithm is highly dependent upon &hé original
numerical values assigned to the data terms.” In the first of the tﬁo examples
-above, the original numbering scheme was such that the vast majority of the
complete subgraphs of the large clusters already found were rejected without
having to completely reproduce the new cluster (step & of the algorithm). A
Hoﬁever, in the second example; due to the location of thé nodes which caused
the distinction between the five iérge'élusters, a larger percentage of the
complete subgraphs of the larger maximal complete subgraphs had to be completely
produced by the algorithm and finally rejected only whenAit was discovered that,
upon producing the cluster, the candidate list Cj was not empty'(Step 6 of

the algorithm).




For a maximal complete subgraph containing n nodes, the number of
complete subgraphs containced within it becomes.excessive wvhen n is large
For any maximal compiote subgraph containing n nodes, we can produce (nfl)
complete subgraphs containing n-1 nodes; we also can flnd' é}complete sub-
graphs with n-2 nodes. By continuing this procedure, one can see that the
total pumber of complete subgraphs contained in'any maximal complete subgraph
n;1 ( ?3. From the binomial theorem, we know that 2" = 2 (?).
Therefore, the total number of complete subgraphs of a maximal complete sub-

graph of degree n is equal to A n - Eig—ll,. In the case where n = 37,

of n terms is

as was found in the above data set, we therefore have 1.37 x 10l complete
gubgraphs that may be tested by Bonner's algorithm. Therefore, any significant
decrease in.the number of suboraphq eliminated at Step 8 of the algorithm

eould cause the processing time of an involved input set to get out of hand

This cannot happen with the Bierstone algorithm. " . '.

- 5.. Refinement of Clusters via Gotlieb and Kumar Algorithm

" Qlusters fcrmed.by maximal complete subgraphs may overlap for highly
connected input sets. For example, one of the larger data eets precessed
by Bierstone's algorithm Qas found to have three maximal complete subgraphs
ef 64 terms, each of which had 63 terms in common with the other two maximal-”
complete subgraphs, An additional five smaller maximaljcomplete subgraphs
@f the same input set were found to contain 6 terms each, 5>of vhich were
commen to ail five maximal complete subgraph As was previously discussed,
the maximal complete subgraphs form our strictest dCanlthn of a cluster.
It is evident {1om the above example that such a deflnltlon may not be
desirable in a system whose aim is to produce a concise set of clusters of
highly relafed terms, In the above example, three distinct clusters of 64
“terms are formed due to the fact that three nodes, all of which are connected
to 63 common nodes, have no interconnections. It would seem that the number
¢f common connections these modes possess should override the fact that the
nodes are not directly related. . | _ |

Gotlieb and Kumar [16], have“developed a procedure for combining such

elusters into diffuse classes of index terms. They form a cluster - cluster
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similarity matrix D with entries dij defined as

(@) dpy=1-_

vhere I C. {\ Cj I is equal to the number of terms the two maximal complete
sets have in common, and [ C (J c l is equal to the total number of unique
terms contained in cluster C and in cluster Cj The values d 13 represent
the proportion-of terms contalned jointly in the two clusters, As with the
férm~term'éimi]arity, we set a threshold level § for the cluster-cluster
:;~sim11ality matrix; the result:ng binary matrix again represents a graph

7 " The entries dij are essentlally the set theoretic representation of the
-Tanimoto measure. (It is actually one mlnus theQTanlmoto measure. The
“entries are used to be consistent with Gotlieb and Kumar's papér.) Clusters
of the clusters may now be found by considering the matrix D as our’input
graph. Any of the criteria for degermining clusters of‘an input ggaph can be
selected for producing clusters of the input maximal complete subgraphs. '
Gotlieb and Kumdr state that clusters should Ee the maQimal_complete,sets,
that is, the same definition as he uses to form the clusters between.termo(l).
For our appllcatlon, we require that the elements of the second generatlon
clusters form a connected component The clustering of clusters is repeated,
;Wlth the values of dij computed from the resultant_clusgers‘of the previous

- iteration, until a point is reached vwhere no combinations of the elements can

"Vbe made.

- Results were cbtained for the threshold 1evel° 6§ = 0.5 and & = 0.7,
Rather than.find the diffuse concepts by means of a separate pass on the
resultant maximal complete subgraphs output by Bierstone's élgorithm, Gotlieb's
combining scheme was incorporated as part of Bierstone's algorithm. This
édditional processing roughly doubled the fequifed execution time fof producing

clusters. The diffuse concepts produced from the known maximal complete

(1) Although CGotlieb and Kumar state that they use the maximal complete sub-—

. graphs of the newly formed graph to develop diffuse concepts, the
experimental reoults.p10v1ded in their paper suggest that the connected
components were used to find the diffuse concepts.
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subgraphs appear, on a subjective Easis, to be quite good: For'examplé,
both of the & values combined the above sample data set into two diffuse
‘concepts, on: consisting of 66 nodes (containing the 63 common nodes plus
the three nodes which were not inter—connected) and the other consisting
of six nodes (containing the five common nodes plus the five nodes which
were comnected to these nodes in the original maximal complete subgraphs).

6.

Experimental Results

‘The clustering procedure using the Bierstone algorithm was applied to
several different threshold matrices of the original term-term matrix.
Threshold matrices for values of T = 0.4, T=0.5,T=20.6and T = 0.7 were :
‘ genérated. Fach of these threshold matricas-was then divided into a set of
disjoint threshold matrices (represeﬁtiﬁg the connected components of the
eorresponding graph) and used as input to the Bierstone algorithm. Threshold
matrices were constructed for values of T = 0.1, T = 0.2, and T = 0.3 but,
gince each matrix contained one connected component of at least 1150 terﬁs,
the Bierstone algorithm was not applied. It was found that the number of
nodes con?ained‘in the lafgest connected component of the graph'deséribed by
the threshold matrix varies the greatest between the threshold matrices of
T = 0,3 (1150 nodes) aﬁd T = 0.4 (72 nodes). The fact that the size of the -
largest connccted component in the threshold matrices for T = 0.4, T =;0.5"’///
~,‘(69 nodes), T = 0.6 (67 nodes); and T = 0.7 (66 nodes) remains fairly’} 7
constant, while the same values for T = 0.1 (3,783 nodes), T = 0.2 (2,797
'Qodes), aéd T = 0.3 varies so greatly, tends to jindicate that some
vé;abiiization of the threshold matrix occurs around a threshold value of
Te 0 o |

For T = 0.4, two additional cl&stering‘procedures were aﬁpliéd, In these
_two cases, maximal complete subgraphs of a connected component were combined
via the clustering technique déscribed by .Gotlieb. and Kumar. These grouped
maximal complete subgraphs ﬁere considered as the resultant clusters.

Threshold values of § = 0.5 and § = 0.7 were used.

o3

6.1 Styuctural Composition of Clusters
Yor valucs of T = 0.4 and T-= 0.5, the average size of the clusters

“ defined by the connected components was 6.5 terms. Clusters defined by the
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maximal eomplete subgraphs of the connccted components had an average of
5.1 terms per clusters. However, the maximal complete subgraphs of the
connected components introduced approximately 60Z more clusters. This was
to be expected as many of the connected components contained several maximal
coﬁplete subgraphs consisting of some of the terms of the cennected.component.
For values of T = 0.6 and T = 0.7, very little change in the average
size of clusters was detected between clusters defined by eonnected components
and clusters defined by maximal complete subgraphs of connected components.
The total number of clusters defined by maximal complete subgraphs was one
less than phogeAdefined by connected components for both T = 0.6 and T = 0.7.
The reason for each of the preceding results can be determined by considering
the compositioﬁ of the two threshold matrices for these values of T. 1In each
case, an extremely high percentage of the connected components wefe also A
maximal complete subgraphs (97.3% for T = 0.6 and 99.2% for T = 0.7), and
he gleater majority of the terms of the input data set were contained in
those maximal complete subgraphs (91.6% for T = 0.6 and 93.3% for T = 0.7).
Thus, very few additional clusters were produced by searching for maximal
complete subgraphs in the small number of connected components which were
not themselves maximal complete subgraphs. Those found had.very little effect,
~ on the average size cluster produced. The total number of clusters was reduced
‘because fewer clusters were added by the discpvery of connected componentsﬁ,f”“
‘which contained maximal complete subgraphs than were deleted by the presence
of connected components which contained no maximal complefe subgraphs.
‘As was to be expected, when the Gotlieb and Kumar algorithm was used to

comblne maximal complete subgraphs found in the threshold matrix for T = 0.4,

. .the total number of vesultant clusters was reduced. However, interestingly

enough, the average size of the’ clusters produced decreased only slightly.

" This apparently was due to the fact that a good number of maximal complete
-subgraphs of two elements; pleV1ously not considered as clusters, combined to
‘form'clusters of three and four terms. This same reason could be given to
explain why the number of clusters produced for & = 0.7 was 47 greater than
the number produced for § = 0.5. Conceptually, it would seem that clusters
produced for a larger § valLes whlch induce$ more combining of clusters; would
produce fewer and larger clusters. The clusters produced for § = 0.7 were

-slightly larger on the average than those produced for § = 0.5,
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One furthef point of interest is that the averagé size of the clusters
defined by maximal complete subgraphs was approximately constant for all
values of T. (sece Figs. 3 &4) At the same time, the nunber of clusters
Iproduced for the lower values of T was significantly greater than the
number produced for the larger values of T. For example, for T = 0.4, 402

clusters were found, nearly three times the 148 found for T = 0.7. Apparently,

the threshold value applied does not affect the average size of the clusters
produced, but more directly affects the number of clusters/produced.
Admittedly, all the clusters produced were results of the same data base, but
it seems that this is a fair conclusion to make frbm the work conducted in
this study; It would be of interest to apply the techniques of this study

-to other data sets to determine if similar results would be obtained.

6.2 Summary of Major Conclusions

The following list summarizes the major conclusions of the study.

J. The Bierstone algorithm, which deveibps méximai complete subgraphs
for an input graph, appears to be' the most efficient one presently'availablé.
It avoids the problems of Tepeatedly outputtiﬁg the same maximal complete
éubgraph and of outputting complete subgraphs which are not maximal. At the
same time, it oﬁerates significantly faster than recent algorithms proposed
by Bonner [7] ana Sparck«Jones [39]. - .
_ 2. Threshold matrices produced for values of T > 0.6 yield basicélly
the sane clﬁstefs regardless of which of the three cluster definitions is used.
This is substantiated by the data in Appehdix 3 which shows the large
“ﬁercentage-of connected components which are also maximal complete subgraphs:
for large values of T. This observation, if found to be valid for other data
bases, could save considerable computer time by permitting'theAuse of only the
. algorithm to find the connected components of the graph.
) 3. The average size of the clusters defined by the maximal complete sub-
graphs does not appear to be dependent upon the threshold value applied.
Bowever, the total number of clusters producéd increases significantly as the
threshold value decreases. P . A

4. Clusters defined by ¢onnecteé compénents of the threshold matyrix for
small values of T < 0.5 may be large in size and contain highly related sub-

graphs which have little, if any, interrelatedness. Such subgraphs may become
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part of the same connected component cluster through fhe existence of
general terms which are strongly related to the content terms of several
unrelated subsets of the connected component.

5. Clusters defined by maximal completé subgraphs of the connected
components of the threshold matrix for values of T < 0.5, tend to subdivide

" the connected component into highly related and overlapping clusters. Such
overlapping clusters will generally reflect specific aspects of thé same
general area of interest, '

6. Clusters defined by grouped maximal'complete subgraphs tend to
combine highly overlapping clusters into one general cluster. Such clusters
usually are composed of the elements contained in the union of the overlapping
clusters. ' | | '

7. Clusters prodﬁced.from‘the threshold matrices for values of T 2:0.6.
teﬁd to divide the terms into sets of disjoint clusters which are small in
size and general in nature. For overlapping maximal complete subgraphs

" found for lower values of T, the representative clusters for higher values

of T will generally correspond to the jntersection of the elements contained

‘in the overlapping maximal complete subgraphs.

It is 1mportant to note that the conc1u31ono and evaluations presented
in this paper are based on three different cluster definitions produced from(
“four dliferent threshold matrices on one data base. The evaluation of a
_ciuster and the determination of its relevance to the data set can beAa
‘function of what clusters are considered. It is clear from this study that
no single threshold value or cluster definition can be guaranteed to produce
.worLﬂwhlle clusters regardless of the input data set. Rathel, several -
different threshold values and cluster definiti&ns should be tested to determine
which produces the best results for the particular data set. The user can
“gain greater insight into the structure of the data base by viewing such
" alternative clﬁsters. The decision of what parameters to use in defining
clusters of a data set should be dependent upon how the clustering process is
to be implemented and, in light of this, what type clusters will provide the

-most meaningful results. This will be-explored in a companion paper.
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APPENDIX 1

BIERSTONE'S ALGORITHM FOR FINDING MAXIMAL COMPLETE SUBGRAPHS

The following notation is used by the algorithm:

Mj: An array containing those nodes greater than j that the jth

node is connected to.

Py The “k- nodes of the data set.
C,: A set of arrays in whicﬁ maximal complete subgraphs are built up.
i Y phs P

W : A temporary storage location which contains those nodes of the Mj

 begin prdcessed which have not yet,beén put into some member of C

K]

S,T¢ Temporary storage locations.

Operétion’gﬁ_the Algorithm

i

0

‘Step 1. i . ‘
- number of nodes in the input data

_ 3
Step 2. j =3 -1

-

.~  Step 3. If:f% = 0 -- go to Step 2.
T Otherwise, continue to Step 4.
. [’~ R . ’ - . . | N . =. e
Step»:. For each_pk;Q Mj increase 1‘by } and put c, . {pj, pk}
Step 5. j=3j -1 ’ ' -
Step 6. If j = 0 we are finished and the set of arrays C represents
the nodal sets of all maximal complete subgraphs of the input
set. . ' '

CIf j # 0, continue to Step 7.

~. Step 7. 1If Mj = 0, go to Step 5.

Otherwise, set W = Mj
L =1
k= 0«

and continue to Step 8.

i

i.
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Step 8., k =k + 1
Step 9. If k =L + 1, go to Step 17.

Step 10, T = C /\Mj
If T contains fewer than 2 nodes, go to Step 8; otherwise,

delete from W all nodes common to T and W and continue to

Step 11.
Step 11, If 7 = Ck go to Step 15.
Step 12, If T = Mj’ i=1+1 .
' TU{p}

B and go to Step 5

6therwise,vcont1nue to Step 13. I T

Step 13. Is T a subset of any C (q = 1,...,kul k%l,...,i)
' that contains pJ? -

If yes, go to Step 8; )
ofheIWLse, set S = Tt}{p } and continue to Step 14,

1t

Step 14. Is some C (¢ = L+l,...,3i) a subset of S?

it

1f so, put Cq S and delete any C_ (r = ql,e0a,i)
vhich is also a subset of S;
If not, set 1 = i +1
C, =8
i
Go to Step 8.

i

Step 15, Put node Py into C

k' . .
- Delete any Cq (¢ = ktl,...,i) that is a subset of the
- altered Ck'

Continue to Step 16.

Step 16, 1I£ T = Mj’ go to Step 5;

otherwise, go to Step 8,

Step 17. Yor each P, remaining in W, increase 1 by 1 and put
Ci = {Pj? pn}:
Go to Step 5.
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APPENDIX 2

BONNER'S CLUSTER-BUILDING ALGORITHM

This algorithm builds up a cluSter one object at a time, keeping track
of items at each level i of the buildup. The following items are used by
the algorithm: ' '

1. A, - An array representing the set of objects in the cluster
at this point. |
2. C, - An array representing the set of objects which could

E possibly be added to A, to further increase the cluster.,

i
“3. L, - An array of numbers where the ith element représents the

last object of C, to be considered for addition to the cluster.

i
4, Sj,i - The input threshold matrix where §,i represents the set of

all members related to object L. ‘
. Elements for A, C, and L are stored for each i which is smaller than or

) eqdal to the present i. The algorithm proceeds as follows:

Step 1. Set: i=1

S Ci'= all objects
- 'Ai = o objects
Li = 1

Step:2; Consider Ci for the presence of objectALi:
' If it is present go to Step 3; o

- if not, add 1 to L and go to Step 5.

Step 3. Store objects common to Ci and SL,l aS_Ci'%~1’ deleting Li

+ 17 R L e

(from Ci
Store objects in A, plus L, as set A,
i i i-

i
Step 4. Add 1 to L; and store as L ’
1i=41i+41

i+
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Stép 5. If Li is greater than the number of the last possible object,

go to Step 6; otherwise, go to Step 2.

Step 6. Set T = A

. i’
CIf Ci is empty, store Ai as a cluster,
If %.is not empty this means either the cluster Ai has been

found before_or it is a subset of a cluster found before.

Step 7. 1=141-1
| If 1 = 0, all clusters have been. found--stop;

otherwise, go on to Step 8.

Step 8.‘ Form thevsép of all objécts in Ci with numbefs greéter.than Li;
' If these are not a subset of T, go to Step 9. -
If they are a subset of T, it'means that the clusteﬁ found
from these o?jects Would only be a subset of T; therefore, go
:ﬁo Step'7. - a ' o |
Step 9. L(i) = L) + 1
. ~Go to Step 2.

of -
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 STRUCTURAL COMPOSITION OF THRESHOLD MATRICES

the graph.

3

p ) Edges Nodes 2 # of (3) NQNQ(Q) % Nodes ©) % CeC.(G)Time(7
c.c. in MCS own MCS |[(min.)

0.1 22,993 3,848 24 3,783 1.3 87.5 1.07

0.2 12,476 3,255 146 2,797 9.1 . 82.2 .68

0.3 || 8,542 2,603 349 1,150 22.5 68.8 | 1.58

0.4 6,630 2,084 475 72 41.6 69.1 1.87

0.5 6,532 2,001 450 69 41.1 68.0 1.80

0.6 4,772 1,314 411 67 91.6 . 97.3 1.85

0.7 4,696 1,222 379 66 93.3 99.2 1.48

(1) ‘T - Theé threshold level.

(2) Nodes - The number of nodes that are connected to at least one other node.

The total number of terms (nodes) in the data set was 3950.

(3) éhggﬁgigL_—~The number of connected compohents‘in the graph.

(4) N.N. - The number of nodes in the largest connected coﬁponent;

(5) % Nodes in MCS - The percentage of nodes contained in connected components

vhich form maximal complete subgraphs.
®) % C.C. on MCS - The percentage of the connected components which form
maximal complete subgraphs.
{7) Time - The time in minutes reduired to find all connected components of
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